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What are the impacts of sustainability policies 
on inequalities?

Glasgow subway: Public Health Scotland



Agent-based modelling (ABM)

§ Autonomous, 
heterogeneous, 
interacting agents

§ Represent 
individuals or 
groups

§ Situated in a virtual 
environment



Types of problems

Crooks et al. (2019), Agent-based Modelling and Geographical Information Systems: A Practical Primer, Sage, London, UK. 



Why ABM? 

§ ABM being used for wide range applications
§ Integrate diverse knowledge and data
§ Simulate dynamics from intervention scenarios

§ Unintended consequences
§ Need to understand the relationships in the real data: the cause and effects 

(challenging in this area)
§ MacKay (2008): Complex systems as “intricate graph of causal links”

§ Graphs are cyclic, creating feedback loops
§ All nodes members of at least one loop – agents cannot optimize without 

infinite recursion
§ No node directly influences every other node

§ No agent can undertake an action guaranteed to generate a consequent state 
of the whole system



Simple causation

§ Causation is a temporal relationship between 
pairs of events
§ Effects can have necessary causes

§ The occurrence of the effect means the cause must 
have happened

§ and Sufficient causes
§ If the causes occur then the effect will happen

§ Simple causation
§ No external influence on the system
§ An event of class A (empty circle) always leads to 

an event of class Z (filled circle)

A Z



Complications

§ Reinforcement
§ Event classes A and B reinforce each other
§ Precise details of system states lead to 

qualitatively different resulting event classes Y 
and Z

§ Openness
§ Complex systems have permeable boundaries 

(Thurner et al. 2018)
§ External influences lead to event classes other 

than Z given necessary and sufficient 
conditions A

A Z

Y

B

A Z

Y



Complications

§ Multidimensionality
§ Events of multiple classes A, B, …, M are 

needed to bring about Z 
§ Harder to isolate these, and harder to make 

them happen together in order to achieve Z
§ Multiple asynchronous, autonomous actors

§ Events of class A can lead to multiple classes 
of event X, Y, Z, …

§ Order in which asynchronous actors operate 
influences outcome

§ Usually managed by social norms and 
institutions 

A

Z
M

A
Z
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Causation and ABMs

§ ABMs integrate many 
models of causation
§ Generative (micro-macro)
§ But also:

§ Counterfactual causation
§ Law-like causation
§ Probabilistic causation

§ And macro-micro 
interventions





Appeal of ABM: Modelling Human Behaviour

§ Human – rational animals? Predictable?
§ Does the data contain the right processes?
§ Many many behavioural frameworks – which one?
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Geographical Applications

Sy
st

em
/E

nv
iro

nm
en

t C
om

pl
ex

ity

Behavioural Complexity

Humanitarian 
Relief

Crooks & Wise (2013) 

Retail
Heppenstall et al. (2006)

Crime
Malleson et al.
(2013)

Riots
Pires & 
Crooks (2017)

Pedestrian 
Dynamics  

Crooks et al. (2015) 

Batty et al. (2003) 

Torrens & 
McDaniel 
(2013)

Traffi
cManley et al. (2014) Migration

Pumain (2012)

Gulden et al. (2011)

Urban Growth & 
Land Use Change

Wise & Crooks (2013) 

Xie & Fan (2014)

Haase et al. (2010)

Residential 
Location

Patel et al. (2012) 

Augustijn-Beckers et al.
(2011)

Jordan et al. (2014)

Benenson et al.(2002)
Disasters

Wise (2014)

Dawson et al. (2011)
Crooks &
Hailegiorgis (2014) 

Eubank et al. (2004)

Disease 
Spread



Appeal of ABM: Modelling Human 
behaviour

Quiz

§ Choose a number between 1 
and 4

§ What percentage of people 
do you think chose:
§ 1?
§ 2?
§ 3?
§ 4?



Schlüter et al. (2017): MoHuB

§ Framework for thinking about 
decision-making in ABMs of SES
§ What does the agent perceive?
§ How does the agent evaluate 

their significance?
§ What aspects of the agent’s 

state drive the options to 
choose from?

§ How does the agent choose?
§ What is the effect of the 

choice?

Social & Biophysical Environment

Individual

Perception Behaviour

State
needs, goals, 
knowledge, 

assets, values

Perceived
Behavioural
Options

Evaluation Selection



Various options for simulating the choice

§ Heuristics
§ e.g. from interview data

§ Decision trees
§ e.g. learned from questionnaire data

§ Optimization
§ A surprising number of ABMs use utility maximization!

§ Formalizing social theories
§ e.g. CONSUMAT (Jager 2000; see right):

§ Needs (Max-Neef 1992), Behavioural control (Ajzen & Madden 
1986), Theory of planned behaviour (Ajzen 1991), Social Learning 
(Bandura 1977), Social comparison (Festinger 1964)

§ Social theories are not software specifications!
§ (Muelder & Filatova 2018)

§ Cognitive
§ e.g. Case-Based Reasoning, Belief-Desires-Intentions

§ Adaptive
§ e.g. Evolutionary, Learning (including neural nets)

Context of decision
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Simulating pedestrian movement

§ Can we use data sources to 
create an accurate picture of 
how people move around 
(behave) an urban space?
• Use Census to create population
• Use Time/Work survey to put in 

basic behaviour (commuting)
• Put them in houses and watch 

them go
• Calibrate against sensor 

information

Crols, T. and Malleson, N. (2019) Quantifying the ambient population 
using hourly population footfall data and an agent-based model of 
daily mobility.  GeoInformatica, 23: 201-220



Real data

Model output

Crols, T. and Malleson, N. (2019) Quantifying the ambient population using hourly population footfall data and an agent-based model 
of daily mobility.  GeoInformatica, 23: 201-220



Can we get behaviour right?

§ Behavioural rules often drawn from historical data
§ Need rich, individual-level data
§ Contain all events/experiences, results of feedback
§ How extract behavioural rules from qualitative data?
§ Assumptions (rationale, knowledge…)

“Imagine how much harder 
physics would be if electrons 
had feelings!”



Trained Navigating Agent
Using perspective visual inputs to navigate

Landmarks help guide way to target

Confused Agent
Landmarks switched

Finding target difficult for agent

Acknowledgement: Ed Manley

Olmez, S., Heppenstall, A., Birks, D. (2023) Investigating the emergence of complex 
behaviours in an agent-based model using reinforcement learning. In Review
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The SIPHER
Wheel

Eight integrated 
workstrands

Understanding 
the policy 
systems

Data & 
Evidence

Complex 
systems 

modelling

Preferences 
and social 
valuation

Economic 
models and 

decision 
support



Synthetic populations



Dynamic microsimulation

§ Run policy 
scenarios
§ Effects of ‘cost of 

living’ crisis
§ Universal credit 

uplift
§ Assess impact on 

Mental Health 
(SF12)



Universal credit uplift



Move towards urban 
digital twins

§ Recent significant interest from 
government (and industry / 
academia)

§ Pieces coming together (SIPHER, 
DyME, QUANT, GALLANT…)

§ Can we make inclusive DTs that 
can help decision-makers?

§ Number of challenges still to 
overcome.

of saturation model that had seemed so 
natural early in the nuclear age. Fewer 
than 20 countries currently invest more 
than 2% of their gross domestic product 
in research and development, accord-
ing to data from the Organisation for 
Economic Co-operation and Develop-
ment and the World Bank. In several of 
those countries, meanwhile, the nature 
of government support has shifted, often 
prioritizing projects with short-term 
goals and practical applications over 
longer-scale inquiries. 

When Lockyer was sending the first 
issue of Nature off to press, many ele-
ments of the modern scientific enter-
prise were being forged across Britain, 
the European continent and parts of 
Asia. But to fully grasp the range of mon-
etary relationships that scientists now 
navigate — scouring today’s equivalents 
of the Venetian senate for funds, while 
courting private donors in Kavli Insti-
tutes and Simons Foundation centres 
that are no less sparkling than a Medici 
palace — we would do well to keep Gali-
leo in mind. ■

David Kaiser is professor of the history 
of science and professor of physics at the 
Massachusetts Institute of Technology, 
Cambridge, Massachusetts, USA. 
e-mail: dikaiser@mit.edu
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Digital twins — precise, virtual copies 
of machines or systems — are revo-
lutionizing industry. Driven by data 

collected from sensors in real time, these 
sophisticated computer models mirror 
almost every facet of a product, process or 
service. Many major companies already use 
digital twins to spot problems and increase 
efficiency1. Half of all corporations might be 
using them by 2021, one analyst predicts2.

For instance, NASA uses digital copies to 
monitor the status of its spacecraft. Energy 
companies General Electric (GE) and 
Chevron use them to track the operations 
of wind turbines. Singapore is developing a 
digital copy of the entire city to monitor and 
improve utilities. Machine intelligence and 
cloud computing will boost such models’ 
power.

There is much to be done to realize the 
potential of digital twins. Each model is 
built from scratch: there are no common 
methods, standards or norms. It can be dif-
ficult to aggregate data from thousands of 
sensors that track vibration, temperature, 
force, speed and power, for example. And 
data can be spread among many owners 
and be held in various formats. For example, 
the designers of a particular car might hold 

information on its materials and structure, 
while the manufacturers keep data on how 
the vehicle is produced and garages retain 
information on sales and maintenance. 

The result? Confusion. A digital twin can 
fail to echo what is going on in the real world 
and lead managers to make poor decisions.

Here we set out the main problems 
and call for closer collaboration between 
industry and academia to solve them. 

DATA DIFFICULTIES
The first step is to decide what types of data 
to collect3. It is not always obvious. To model 
a wind turbine, for example, might require 
monitoring of vibrations from the gearbox, 
generator, blades, shafts and tower, as well as 
of voltages from the control system. Torques 
and rotation rates, temperatures of compo-
nents and the state of the lubricating oil must 
also be tracked, together with environmen-
tal conditions (wind speed, wind direction, 
temperature, humidity and pressure). 

Missing or erroneous data can distort 
results and obscure faults. The wobbling 
of a wind turbine, say, would be missed if 
vibration sensors fail. Beijing-based power 
company BKC Technology struggled to 
work out that an oil leak was causing a steam 

Make more 
digital twins

Virtual models boost smart manufacturing by 
simulating decisions and optimization, from design 

to operations, explain Fei Tao and Qinglin Qi.

Some urban authorities are developing digital copies of cities, as portrayed in this artist’s impression.

IN
TE

G
R

AT
ED

 E
N

VI
R

O
N

M
EN

TA
L 

SO
LU

TI
O

N
S

4 9 0  |  N A T U R E  |  V O L  5 7 3  |  2 6  S E P T E M B E R  2 0 1 9

COMMENT

ǟ
ɥ
ƐƎƏƙ

ɥ
�/1(-%#1

ɥ
��341#

ɥ
�(,(3#"ƥ

ɥ
�++

ɥ
1(%'32

ɥ
1#2#15#"ƥ ǟ

ɥ
ƐƎƏƙ

ɥ
�/1(-%#1

ɥ
��341#

ɥ
�(,(3#"ƥ

ɥ
�++

ɥ
1(%'32

ɥ
1#2#15#"ƥ



What is exascale computing?

§ Exascale computing entails 10^18 floating-point 
operations per second (flops)
§ Your laptop ~10^9 flops

§ exascale = a billion laptops
§ A small cluster ~10^12 flops

§ exascale = a million small clusters
§ A large cluster/cloud ~10^15 flops

§ exascale = a thousand clouds
§ Flops roughly equal to instructions per second



Example

§ ~20,000 runs
§ 76 CPU days of 

computing time
§ 4G ips CPUs

§ 3 × 1016 CPU instructions
§ 1.5 days on 200 CPUs
§ 0.3s at exascale



Exascale computers around the world

§ Frontier (Oak Ridge, Tennessee, USA)
§ 602,268 CPU cores (AMD); 8,335,360 GPU cores (Radeon)
§ 1.1 exaflop capability May 2022
§ 21MW of power needed!

§ Second fastest (Fugaku) on top500.org has ~0.5 exaflop 
performance
§ 30MW; 7.6M cores

§ Chinese believed already to have two as of 2021
§ https://www.datacenterdynamics.com/en/news/china-

may-already-have-two-exascale-supercomputers/
§ Not official, but if true, it would have been the first 

country to achieve exascale computing capability
§ UK planning one
§ Ditto EU (in Germany – JUPITER)

https://www.datacenterdynamics.com/en/news/china-may-already-have-two-exascale-supercomputers/
https://www.datacenterdynamics.com/en/news/china-may-already-have-two-exascale-supercomputers/


The ExAMPLER project

§ 18 month project started 1 June 2023
§ Polhill et al. (2023)

§ Exploring the potential of exascale computing for ABSS
§ … with appropriate institutional and software support …

§ Bringing the social sciences into the conversation about 
exascale computing

§ Gap analysis approach
§ How ready is the ABSS community to take advantage of exascale?
§ What needs to be done to get the ABSS community using exascale?



Doing ABSS differently?

§ How might exascale ABSS drive workflows for 
designing, building and using ABSSs?

§ What does ABSS look like in ten years’ time?
§ What software are we using?
§ What computers are we using?
§ What methods/workflows are we using?
§ Who are we working with?
§ Who are we working for?
§ What can we do that we can’t do now?



Final thoughts

§ ABM has multiple uses / purposes:
§ understanding how the system works
§ explaining how phenomena can occur
§ ‘prediction’…? (Debatable)

§ See Elsenbroich & Polhill (2023); Polhill et al. (2021)
§ integrating knowledge, data, and modes of causation

§ Other challenges:
§ Model initialisation
§ Calibration and validation



Opportunities

§ Creating inclusive, robust DTs
§ Rapid evidence-based work with 

policymakers
§ Understand likely impact of 

interventions 
§ Unintended consequences
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