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What are the impacts of sustainability policies
on inequalities?
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Agent-based modelling (ABM)

" AUtonomOUS’ It looks like
heterogeneous, AN it
interacting agents \Jj

= Represent
individuals or
= Situated in g virtual T Jei ‘
environment




Types of problems

Spatial Scale

Crooks et al. (2019), Agent-based Modelling and Geographical Information Systems: A Practical Primer, Sage, London, UK.
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= ABM being used for wide range applications
Integrate diverse knowledge and data
Simulate dynamics from intervention scenarios

= Unintended consequences

= Need to understand the relationships in the real data: the cause and effects
(challenging in this area)

= MacKay (2008): Complex systems as “intricate graph of causal links”

Graphs are cyclic, creating feedback loops

= All nodes members of at least one loop — agents cannot optimize without
infinite recursion

No node directly influences every other node

= No agent can undertake an action guaranteed to generate a consequent state
of the whole system



Simple causation

= Causation is a temporal relationship between
pairs of events

Effects can have necessary causes

= The occurrence of the effect means the cause must
have happened

and Sufficient causes
= |f the causes occur then the effect will happen
= Simple causation
No external influence on the system

An event of class A (empty circle) always leads to
an event of class Z (filled circle)



Complications

= Reinforcement
Event classes A and B reinforce each other

Precise details of system states lead to

gualitatively different resulting event classes Y
and Z

= (Openness

Complex systems have permeable boundaries N
(Thurner et al. 2018)

External influences lead to event classes other O—«5>@
than Z given necessary and sufficient YA 7 ¢
conditions A




Complications

= Multidimensionality

Events of multiple classes A, B, ..., M are
needed to bring about Z

Harder to isolate these, and harder to make
them happen together in order to achieve Z
= Multiple asynchronous, autonomous actors

Events of class A can lead to multiple classes
of event X, Y, Z, ...

Order in which asynchronous actors operate
influences outcome

Usually managed by social norms and
institutions




Causation and ABMs

EXAMPLER

= ABMs integrate many
models of causation e —

G ene rat |Ve ( m | Cro-mac ro) Sensemaking of causality in agent-based models

Patrycja Antosz?, Timo Szczepanska®, Loes Boumans, J. Gareth Polhill® and Wander Jager®

Routledge

INTERNATIONAL JOURNAL OF SOCIAL RESEARCH METHODOLOGY
Taylor & Francis Group
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u a S O ° UiT the Arctic University of Norway, Tromsg, Norway; “University College Groningen, University of Groningen,
Groningen, The Netherlands; “Information and Computational Sciences, The James Hutton Institute, Aberdeen, UK

= Counterfactual causation asstonct cerwons

Even though agent-based modelling is seen as committing to Causality; agent-based
. . a mechanistic, generative type of causation, the methodology allows for modelling; complexity
| L - I k t representing many other types of causal explanations. Agent-based mod-
aW I e Ca u Sa I O n els are capable of integrating diverse causal relationships into coherent
causal mechanisms. They mirror the crucial, multi-level component of
H H H emergent phenomena and recognize the important role of single-level
u Pro ba b | IlSth Ca usatlon causes without limiting the scope of Fhe offered explana- tion.
Implementing various types of causal relationships to complement the
generative causation offers insight into how a multi-level phenomenon

And macro-micro e e e S
tackling the complex problems of the modern world.
Interventions
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Appeal of ABM: Modelling Human Behaviour 5

* Human —rational animals? Predictable?
= Does the data contain the right processes?

= Many many behavioural frameworks — which one?

i) Ecological Economics D IR Environmental Modelling & Software
55 Volume 131, January 2017, Pages 21-35 ) Volume 48, October 2013, Pages 37-48
e XY 9 w g

Describing human decisions in agent-based
models — ODD + D, an extension of the
ODD protocol

A framework for mapping and comparing
behavioural theories in models of social-
ecological systems

W mor Show more v
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Appeal of ABM: Modelling Human
behaviour

Quiz
= Choose a number between 1
' demi and 4
>\{/:j'—\ = What percentage of people
- = do you think chose:
= 17
= 27
= 37
= 4?



Schliter et al. (2017): MoHuB

" Framework for thinking about . _ : _
decision-making in ABMs of SES Social & Biophysical Environment

What does the agent perceive?

How does the agent evaluate Individual _

their significance? State Perceived
’ needs, goals, Behavioural

What aspects of the agent’s knowledge, Options

state drive the options to RS

choose from?

How does the agent choose? Evaluation Selection
What is the effect of the
choice? Perception Behaviour




Various options for simulating the choice

Heuristics
e.g. from interview data
Decision trees
e.g. learned from questionnaire data
Optimization
A surprising number of ABMs use utility maximization!
Formalizing social theories

e.g. CONSUMAT (Jager 2000; see right):

= Needs (Max-Neef 1992), Behavioural control (Ajzen & Madden
1986), Theory of planned behaviour (Ajzen 1991), Social Learning
(Bandura 1977), Social comparison (Festinger 1964)

Social theories are not software specifications!
=  (Muelder & Filatova 2018)

Cognitive

e.g. Case-Based Reasoning, Belief-Desires-Intentions
Adaptive

e.g. Evolutionary, Learning (including neural nets)

Context of decision

Satisfaction of needs

High Low

> w Do what Do what
"E T most others = others most
© do like me do
o)

|

S

2
g S Habit Optimize




Simulating pedestrian movement

EXAMPLER

= Can we use data sources to -
create an accurate picture of - o
how people move around Y- N
(behave) an urban space?
Use Census to create population

Use Time/Work survey to put in
basic behaviour (commuting)

Put them in houses and watch
them go

Calibrate against sensor
information

Crols, T. and Malleson, N. (2019) Quantifying the ambient population
using hourly population footfall data and an agent-based model of
daily mobility. Geolnformatica, 23: 201-220



Footfall count from all sensors

EXAMPLER

Mean count (z score)

« Commuters
Commuters & retired

o/ Real data

Hour

Crols, T. and Malleson, N. (2019) Quantifying the ambient population using hourly population footfall data and an agent-based model
of daily mobility. Geolnformatica, 23: 201-220



Can we get behaviour right?

= Behavioural rules often drawn from historical data

= Need rich, individual-level data
Contain all events/experiences, results of feedback
How extract behavioural rules from qualitative data?
Assumptions (rationale, knowledge...)
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Acknowledgement: Ed Manley

Trained Navigating Agent Confused Agent
Using perspective visual inputs to navigate Landmarks switched
Landmarks help guide way to target Finding target difficult for agent

Olmez, S., Heppenstall, A., Birks, D. (2023) Investigating the emergence of complex
behaviours in an agent-based model using reinforcement learning. In Review
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Synthetic populations

A synthetic population dataset for estimating small
area health and socio-economic outcomes in Great
Britain

Guogiang Wu'®, Alison Heppenstall'?, Petra Meier?, Robin Purshouse?, Nik Lomax!?

August 31, 2021

1. Leeds Institute for Data Analytics and School of Geography, University of Leeds, Woodhouse Lane,
Leeds, West Yorkshire, LS2 9JT, UK

2. Alan Turing Institute for Data Science & Al, The British Library, London, NW1 2DB, UK

3. MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Berkeley Square, 99
Berkeley Street, Glasgow, G3 THR, UK

4. Department of Automatic Control and Systems Engineering, University of Sheffield, Portobello Street,
Sheffield, S1 3JD, UK

* corresponding author (g.wu@leeds.ac.uk)
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Module Set 3
(Intermediary modules)

Module Set 2
(Mortality/Fertility)

Replenishing
Population

Module Set 1
(Disposable Income
Intervention)

Module Set 4 (SF-12) End

Has
the final year
2035 been
reached?

Move to next time
pointt=t+1

Replenishing
Populaition

Systems science
In Public Health and
Health Economics Research

6‘ SIPHER

| e “onsortium



Dynamic microsimulation

[ | R u n p O | i Cy Input Intermediate pathways Outcome

scenarios

Effects of ‘cost of
living’ crisis

Universal credit
uplift
= Assess impact on
Mental Health
(SF12)




Universal credit uplift

EXAMPLER

Legend 0.16 Legend
0.25 1 Baseline Baseline
£25 Universal Credit 0.14 - £25 Priority Groups
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Move towards urban
digital twins

Recent significant interest from
government (and industry /
academia)

Pieces coming together (SIPHER, g Y WREET g < RS
DyM E ) QUANT' GALLANT...) Someurbanathritieredevelingdigitalcopesofcities,aportrayedinthisartist’smpression. »

Can we make inclusive DTs that Make more
can help decision-makers? dlgltal twins

N um b er Of C h d I I en g es St | I I tO Virtual models boost smart manufacturing by
simulating decisions and optimization, from design
overcome. to operations, explain Fei Tao and Qinglin Qi.

igital twins — precise, virtual copies information on its materials and structure, ¢
of machines or systems — are revo- while the manufacturers keep data on how 2
the vehicle is produced and garages retain 3

lutionizing industry. Driven by data




What is exascale computing?

" Exascale computing entails 10718 floating-point
operations per second (flops)
Your laptop ~1079 flops
= exascale = a billion laptops
A small cluster ~10712 flops
= exascale = a million small clusters

A large cluster/cloud ~10/15 flops

= exascale = a thousand clouds
" Flops roughly equal to instructions per second



Example

= ~20,000 runs

= 76 CPU days of

computing time Nonlinearities in biodiversity
4G ips CPUs incentive schemes: A study using an

integrated agent-based and
"= 3 x 10 CPU instructions metacommunity model s«

J. Gary Polhill o i, Alessandro Gimona, Nicholas M. Gotts

= 1.5 days on 200 CPUs Showmore +

+ Add to Mendeley o& Share =3 Cite

“54iy) Environmental Modelling & Software [l
Volume 45, July 2013, Pages 74-91

= (0.3s at exascale

https://doi.org/10.1016/j.envso ft.2012.11.011 2 Get rights and content 71



Exascale computers around the world EZZ8

//’//H

Frontier (Oak Ridge, Tennessee, USA)
602,268 CPU cores (AMD); 8,335,360 GPU cores (Radeon)
1.1 exaflop capability May 2022
21MW of power needed!

= Second fastest (Fugaku) on top500.org has ~0.5 exaflop
performance

30MW,; 7.6M cores
" Chinese believed already to have two as of 2021

Not official, but if true, it would have been the first
country to achieve exascale computing capability

= UK planning one
= Ditto EU (in Germany — JUPITER)

HPE

oct D, Fujitsu

ERE


https://www.datacenterdynamics.com/en/news/china-may-already-have-two-exascale-supercomputers/
https://www.datacenterdynamics.com/en/news/china-may-already-have-two-exascale-supercomputers/

The EXAMPLER project

= 18 month project started 1 June 2023
Polhill et al. (2023)
= Exploring the potential of exascale computing for ABSS
... With appropriate institutional and software support ...
" Bringing the social sciences into the conversation about
exascale computing
" Gap analysis approach
How ready is the ABSS community to take advantage of exascale?
What needs to be done to get the ABSS community using exascale?



Doing ABSS differently?

" How might exascale ABSS drive workflows for
designing, building and using ABSSs?
= What does ABSS look like in ten years’ time?
What software are we using?
What computers are we using?
What methods/workflows are we using?
Who are we working with?
Who are we working for?
What can we do that we can’t do now?



Final thoughts

= ABM has multiple uses / purposes:
understanding how the system works
explaining how phenomena can occur

‘prediction’...? (Debatable)
= See Elsenbroich & Polhill (2023); Polhill et al. (2021)

integrating knowledge, data, and modes of causation
= Other challenges:

Model initialisation

Calibration and validation



Opportunities

" Creating inclusive, robust DTs

" Rapid evidence-based work with
policymakers

Understand likely impact of e
interventions

Unintended consequences
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