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Computational Models

* You have a ‘good’ numerical model

e But it is a little expensive to run

* And we would like to know things that require lots of runs
 EXxplore input space
e Sensitivity Analysis
 Uncertainty Analysis (Monte Carlo)

* |Inverse modelling (calibration)



Continuum Models vs ABM

Continuum models
ABMs
Integrals of the model outputs

Deterministic vs Stochastic Models



Inputs andOutputs
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Surrogate Modelling

* One solution to such problems are fast surrogate models
* Possible surrogates include:

* Polynomials (polynomial chaos)

* Neural Nets

e (Gaussian processes

e |f the surrogate includes a measure of its own uncertainty we call it
an emulator



Gaussian Processes

A Gaussian process is a function defined by mean and
covariance functions

 The form of the covariance says how smooth the function
IS

* And it has a length scale parameter that says how wiggly
it is
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5.

Procdure

. Set up prior (form of mean and covariance fn’s)

Design training experiment
Run training experiment
Estimate model parameters

Validate model (LOO or separate experiment)



Gaussian process
emulators

Emulators are stochastic functions.

All realisations interpolate the training data (unless we tell
them not to. Add a nugget).

Any set of outputs have Normal distributions with known
mean and variance/covariance.

So we know how well we are doing and can include this
additional uncertainty in any calculations.



Design

Because model runs are expensive
 Fill space

e Minimum number of runs

Latin Hypercubes

Deterministic models no repetition

Stochastic models repetition helps estimate the variances



Input 2
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What can we use i1t for

 We now have a fast, approximate version of the model.

e |t doesn’t replace the model but can be used, for example, for
1. Exploration
2. Sensitivity Analysis
3. Uncertainty Analysis

4. Inverse modelling

5. ...



Exploration

e Often want to explore input space

e May want to find a particular contour or region

* ‘Needle In Haystack’
e Use emulator to explore

e /oom Iin, with additional full model runs to reduce
uncertainty



Sensitivity Analysis

e How sensitive are your model outputs to the inputs?
e Variance based sensitivity analysis

 Always do two at a time sensitivity to account for non-
linearity



Uncertainty Analysis

e The emulator is fast, so Monte Carlo or (Markov Chain
Monte Carlo; MCMC) methods are possible.

1. Setup joint distribution for the model inputs
2. Sample from this distribution

3. Propagate through the emulator (adding the emulation
error)

4. Gives a sample from the output distribution



Calibration
Inverse Modelling

e Measurements on outputs
 What do they tell us about the inputs?

e Run the model backwards



Classical Inverse Modelling

e | east squares
 Bayesian calibration

e Both assume that there is a ‘best’ solution



Model Discrepancy

Our models are not perfect
The data may not lie in the manifold of model solutions
Classical calibration will get to the closest point

And then will appear to get more and more certain (but in
the wrong place!)

We need to take discrepancy into account



Kennedy and O’Hagan

e Kennedy and O’Hagan (2001) used two GPs.
* One to emulate the model and to model the discrepancy
 This is a very nice idea

- But suffers from identifiability issues

- Soluble with strong priors or additional constraints
Brynjarsdottir, J. and O'Hagan, A. (2014)



History Matching

e Instead of trying to find the ‘best’ set of inputs find all the
inputs that are implausible given the measurements

e Discard these

e The ‘best’ solution must lie in what is left.



* Take the squared distance between the expectation of the emulator to
the data

e Scale it by the sum of three variances

* The measurement error

* The emulator variance

* A discrepancy variance

* (For stochastic models there is a fourth term)
* And square root it

e |f that implausibility measure is greater than 3 the set of inputs is
deemed implausible



— F 2
T — y — E(f(x))
Vy =+ Vemul =+ Vdisc

e Vy is the variance of the observations y
* Vemul Is the emulator variance

* Viisc is the model discrepancy



Proceqgure

Collect data
Run designed experiment
Build emulator

Perform history matching

All points with Imp <3 deemed not implausible
If we have many metrics take maz (Imp)

These constitute the Not Ruled Out Yet (NROY) space



Design additional experiment within NROY space
(wave 2)

Rebuild emulator

Istory match

Repeat until NROY is either small enough or does
not shrink

At which point we may need more data
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A Cardiac Model

Thanks to Steve Neiderer, KCL/St Thomas



25% of the parameter space
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6% of the parameter space
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5% of the parameter space
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Advanced lopics

Stochastic models
Sequential Design
Hierarchical models/emulators

Exploiting the unique nature of ABMs



